03 October 2017

FET Open Project QuIET: Quantum Interference Enhanced Thermoelectricity

Prof. Nicolás Agraït, IFIMAC researcher and member of the Department of Condensed Matter Physics, will coordinate the FET Open project QuIET (Quantum Interference Enhanced Thermoelectricity.

QuIET will endeavour to demonstrate that room-temperature quantum interference effects, measured recently in single molecules, can be exploited in massively-parallel arrays of molecules and used to design ultra-thin-film thermoelectric devices with unprecedented ability to convert waste heat to electricity using the Seebeck effect and to cool at the nanoscale via the Peltier effect. Although the dream of high-performance thermoelectric devices has been discussed for many years, evidence of the room temperature quantum interference effects needed to realise this dream was achieved experimentally only recently. 

We shall design molecules with built-in quantum interference functionality, which can be used to engineer the properties of ultra-thin molecular films. Molecules will be designed with robust anchors to metallic and carbon-based nano-gap electrodes, which enhance electron transport and eliminate unwanted phonons.This contacting strategy is scalable from a single junction, with the potential to be replicated billions of times on a single substrate. The ability to exploit quantum interference at room temperature will enable new thermoelectric materials and devices with the ability to scavenge energy withunprecedented efficiency.

QuIET is a highly interdisciplinary project that brings together internationally leading scientists from four different countries (Spain, The Netherlands, United Kingdom and Switzerland) with proven expertise on molecular synthesis, transport measurements and theoretical modelling.

QuIET, whose budget is 3,1 M€, is one of the 26 projects that will be funded in the competitive H2020 call FET-Open research and innovation actions.

We congratulate Prof. Nicolás Agraït.

Share this article